• raheel portfolio WIP

    [raheel portfolio .docx](/assets/uploads/files/1743580274436-raheel-portfolithe o.do cx)the password is password

    √∫∫∞−√∫∫∞−∞1π(1+x2)dx∫∞0[λ2πx3]12e−λ(x−μ)22μ2x∞−∞e−x22dx1∑n=0232(−1)nx12π−−√∫∞−∞e−x22dx232−n=01=−cos(2∫1−11−x2−−−−−√dx∫∞0[λ2πx3]12e−λ(x−μ)22μ2x∫−√∫∫∞−∞1π(1+x2)dx∫∞0[λ\μ)22μ2x∞−∞e−x22dx1∑n=0232(−1)nx12π−−√∫∞−∞e−x22dx232−n=01=−cos(2∫1−11−x2−−−−−√dx∫∞0[λ2πx1

  • raheel portfolio .docx
    this is the current one,same password

    √∫∫∞−√∫∫∞−∞1π(1+x2)dx∫∞0[λ2πx3]12e−λ(x−μ)22μ2x∞−∞e−x22dx1∑n=0232(−1)nx12π−−√∫∞−∞e−x22dx232−n=01=−cos(2∫1−11−x2−−−−−√dx∫∞0[λ2πx3]12e−λ(x−μ)22μ2x∫−√∫∫∞−∞1π(1+x2)dx∫∞0[λ\μ)22μ2x∞−∞e−x22dx1∑n=0232(−1)nx12π−−√∫∞−∞e−x22dx232−n=01=−cos(2∫1−11−x2−−−−−√dx∫∞0[λ2πx1

  • mr.gary, please use ,this one

    √∫∫∞−√∫∫∞−∞1π(1+x2)dx∫∞0[λ2πx3]12e−λ(x−μ)22μ2x∞−∞e−x22dx1∑n=0232(−1)nx12π−−√∫∞−∞e−x22dx232−n=01=−cos(2∫1−11−x2−−−−−√dx∫∞0[λ2πx3]12e−λ(x−μ)22μ2x∫−√∫∫∞−∞1π(1+x2)dx∫∞0[λ\μ)22μ2x∞−∞e−x22dx1∑n=0232(−1)nx12π−−√∫∞−∞e−x22dx232−n=01=−cos(2∫1−11−x2−−−−−√dx∫∞0[λ2πx1

  • Will you submit your final portfolio as the submission date is today?

  • yes,at home

    √∫∫∞−√∫∫∞−∞1π(1+x2)dx∫∞0[λ2πx3]12e−λ(x−μ)22μ2x∞−∞e−x22dx1∑n=0232(−1)nx12π−−√∫∞−∞e−x22dx232−n=01=−cos(2∫1−11−x2−−−−−√dx∫∞0[λ2πx3]12e−λ(x−μ)22μ2x∫−√∫∫∞−∞1π(1+x2)dx∫∞0[λ\μ)22μ2x∞−∞e−x22dx1∑n=0232(−1)nx12π−−√∫∞−∞e−x22dx232−n=01=−cos(2∫1−11−x2−−−−−√dx∫∞0[λ2πx1

  • I look forward to seeing when you submit it.

  • ok😅

    √∫∫∞−√∫∫∞−∞1π(1+x2)dx∫∞0[λ2πx3]12e−λ(x−μ)22μ2x∞−∞e−x22dx1∑n=0232(−1)nx12π−−√∫∞−∞e−x22dx232−n=01=−cos(2∫1−11−x2−−−−−√dx∫∞0[λ2πx3]12e−λ(x−μ)22μ2x∫−√∫∫∞−∞1π(1+x2)dx∫∞0[λ\μ)22μ2x∞−∞e−x22dx1∑n=0232(−1)nx12π−−√∫∞−∞e−x22dx232−n=01=−cos(2∫1−11−x2−−−−−√dx∫∞0[λ2πx1

  • grasps-assessment-idu.docx

    √∫∫∞−√∫∫∞−∞1π(1+x2)dx∫∞0[λ2πx3]12e−λ(x−μ)22μ2x∞−∞e−x22dx1∑n=0232(−1)nx12π−−√∫∞−∞e−x22dx232−n=01=−cos(2∫1−11−x2−−−−−√dx∫∞0[λ2πx3]12e−λ(x−μ)22μ2x∫−√∫∫∞−∞1π(1+x2)dx∫∞0[λ\μ)22μ2x∞−∞e−x22dx1∑n=0232(−1)nx12π−−√∫∞−∞e−x22dx232−n=01=−cos(2∫1−11−x2−−−−−√dx∫∞0[λ2πx1

  • no!!! not this one:raheel-portfolio (1).docx

    √∫∫∞−√∫∫∞−∞1π(1+x2)dx∫∞0[λ2πx3]12e−λ(x−μ)22μ2x∞−∞e−x22dx1∑n=0232(−1)nx12π−−√∫∞−∞e−x22dx232−n=01=−cos(2∫1−11−x2−−−−−√dx∫∞0[λ2πx3]12e−λ(x−μ)22μ2x∫−√∫∫∞−∞1π(1+x2)dx∫∞0[λ\μ)22μ2x∞−∞e−x22dx1∑n=0232(−1)nx12π−−√∫∞−∞e−x22dx232−n=01=−cos(2∫1−11−x2−−−−−√dx∫∞0[λ2πx1

  • noooo!!! i meanDesign IDU Portfoilio.pptx.docx

    √∫∫∞−√∫∫∞−∞1π(1+x2)dx∫∞0[λ2πx3]12e−λ(x−μ)22μ2x∞−∞e−x22dx1∑n=0232(−1)nx12π−−√∫∞−∞e−x22dx232−n=01=−cos(2∫1−11−x2−−−−−√dx∫∞0[λ2πx3]12e−λ(x−μ)22μ2x∫−√∫∫∞−∞1π(1+x2)dx∫∞0[λ\μ)22μ2x∞−∞e−x22dx1∑n=0232(−1)nx12π−−√∫∞−∞e−x22dx232−n=01=−cos(2∫1−11−x2−−−−−√dx∫∞0[λ2πx1

  • raheel-portfolio.docx

    please use this one

    √∫∫∞−√∫∫∞−∞1π(1+x2)dx∫∞0[λ2πx3]12e−λ(x−μ)22μ2x∞−∞e−x22dx1∑n=0232(−1)nx12π−−√∫∞−∞e−x22dx232−n=01=−cos(2∫1−11−x2−−−−−√dx∫∞0[λ2πx3]12e−λ(x−μ)22μ2x∫−√∫∫∞−∞1π(1+x2)dx∫∞0[λ\μ)22μ2x∞−∞e−x22dx1∑n=0232(−1)nx12π−−√∫∞−∞e−x22dx232−n=01=−cos(2∫1−11−x2−−−−−√dx∫∞0[λ2πx1